Натуральні числа — числа, що виникають природним чином при лічбі. Це числа: 1, 2, 3,4,… Множину натуральних чисел прийнято позначати знаком N Існують два основних підходи до означення натуральних чисел: числа, що використовуються при лічбі предметів (перший, другий, третій…) — підхід, загальноприйнятий у більшості країн світу; числа для позначення кількості предметів (відсутність предметів, один предмет, два предмети…) — підхід, прийнятий у роботах Ніколя Бурбакі, де натуральне число означається як потужність скінченних множин; Від'ємні та дробові числа не є натуральним числами.
Як показують дослідження з історії математики, поняття натурального числа виникло на ранніх ступенях розвитку людського суспільства, коли у зв'язку з практичною діяльністю виникла потреба якось кількісно оцінювати сукупності. Найдавніші тексти - єгипетські папіруси і вавилонські клинописні таблички - свідчать про досить високу математичну культуру стародавніх єгиптян і вавилонян.
Великим прогресом було винайдення цифр. Тепер стало можливим записати будь-яке число обмеженим набором символів. Наприклад, вавилоняни розвинули потужну позиційну систему, але зручнішою була індійська позиційна система числення, що дозволяла записати будь-яке натуральне число за допомогою десяти знаків — цифр; вона згодом стала всесвітньо визнаною і досі залишається такою. Таким чином, паралельно з розвитком писемності, поняття натурального числа приймає все більш абстрактну форму, відокремлену від будь-якої конкретності поняття числа, відтворюваного як у формі слів в усній мові, так і в формі позначення спеціальними знаками в письмі.
Важливим кроком у розвитку поняття натурального числа є усвідомлення нескінченності натурального ряду чисел — потенційної можливості його безмежного продовження. Чітке уявлення про нескінченність натурального ряду відображене в пам'ятниках античної математики (III століття до н.е.), у працях Евкліда й Архімеда.
Чітке означення поняття натурального числа на основі поняття множини було дано в 70-х роках XIX століття в роботах Георга Кантора. Спочатку він означує рівнопотужність множин. Потім число елементів однієї множини означається як те спільне, що має дана множина і будь-яка інша, рівнопотужна їй, незалежно від якісних особливостей елементів цих множин. Таке означення відображає суть натурального числа як результату лічби предметів. Нуль, спочатку означав відсутність числа; він став розглядатися як число лише після введення від'ємних чисел.
Немає коментарів:
Дописати коментар